THE EXISTENCE OF A DISCONTINUITY IN THE PROFILE
OF A SLOW SHOCK MAGNETOHYDRODYNAMIC WAVE

O. I. Dementii and S. V. Dementii

An analysis is made of the structure of the profile of a slow shock magnetohydrodynamic
wave of arbitrary intensity in a nonviscous medium. It is shown that the condition for the
formation of a discontinuous profile coincides with the condition for the creation of an iso-
thermal discontinuity in conventional gas dynamics.

1. The system of equations describing the steady-state profile of a plane shock wave in a frame of
reference in which the wave is quiescent has the form

m

d
> akaik(lL)—déE = Bi(u) (=1, ...,m (1.1)
k=1

Bl(u)=0 i=m-1,...n)
(1.2)

Here u= {u}il is a set of parameters describing the state of the medium; 2jk(u) and Bi(u) are known
finite differential functions of their arguments; o} are dissipative coefficients such that without loss of gen-
erality we can substitute ox =0 (k=1,,.., m), o =0 (k=m+1,..., n). The boundary conditions are that
when x — +« the parameters u, (x) tend to finite values of uki. These values, obviously, must satisfy the
equations

Bl(ui)z.o (i=1,..-.vn)

Solving Eq. (1.1) with respect fo the derivatives, we obtain

du | D]
d"—dz—szEi:—l (oyi=1,..,m) (1.3)
Equation (1.1) describes the actual dissipative processes in the shock wave, and therefore the deter-
minant l“ikl cannot vanish in the interval (u=, u™, i.e., the derivatives duk /dx (k=1, ..., m) are always
finite and the parameters themselves uk(x) (k=1, ..., m) are continuous.

Differentiating Eqs. (1.2) with respect to x and solving them relative to the derivatives of the re-
maining n—m parameters, we obtain

du, | Dy*) . 8B, (u)

_—d.t__ |b1',k| ) ik — buk

Gk=m+1,...,n) (1.4)
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Here fDizl is a determinant consisting of elements of the matrix (bji) in which the k~column is re-
placed by a column of functions Cj(u)

m du.
Cl(u)z—-ZbUTl;L i=m-+1,...,n) (1.5)
=1
The solution of system (1.1) and (1.2) [or system (1.3) and (1.4)] connecting the boundary singular
points u~ and u* exists, atleast in the case of fast and slow shock waves, uniquely [1]. Moreover, if in the
interval (u-, u™) the determinant lbik| does not vanish, all the functions uk(x) also are continuous [2].

Vanishing of the determinant |bji| in the interval (u™, u*) corresponds to transition within the wave
profile through the phase velocity of a higher system [ideal system, obtained from Eqs. (1.1) and (1.2) by
reversion of the dissipative coefficients ok to infinity] {2, 3].

It can be seenfrom Eq. (1.4) that with transition through an n-dimensional surface lbik' =0 in (n+ 1)-
dimensional space of the quantities x, w, ..., up, the derivatives dui/dx (k=m+ 1, ..., n) change sign,
passing through infinity, which corresponds either to an unlimited increase or ambiguity of the n—m func-
tions of u(x) (k=m+ 1, ..., n) and confirms the absence of a continuous solution with respect to X.

The singular points u® constitute an exception, in which simultaneously with the determinant |bjxk| all
determinants IDf; | vanish, which, as can be seen easily, occurs when the condition

Cm+17"m+1 + Crsohmia + .- - + Cn}"n =0
is satisfied, where A; is the root of the homogeneous system

bt khme1 + bmss, khmiz + -+ -+ baxhn =0 (k=m+14,...,n)

Thus, the profile of the shock wave contains discontinuities if, in the case of transition through the
phase velocity of a higher system (in the future, for brevity we shall call it critical), the system of equations
(L.1) and (1.2) do not contain singular points in the interval (u~, u*) (for example [3], when m = 1), or a sin-
gular point exists but the solution does not pass through it [4]. If, further, in the case of transition through
the critical velocity the solution passes through a singular point, then the question of discontinuity of the
solution must be considered separately: in this case, the solution can be both continuous (as we shall show
later) and noncontinuous.

2. Let us consider aplane shock magnetohydrodynamic wave in an ideal gas. In magnetohydrodynamic
approximation the system of equations describing the profile of the stationary shock wave has the form [6]

¢ dH.

m—-gx—=UnH1—‘Uan—~Cl (H,, = const) v @.1)
nlf:; =iv,-—%—'H1—Cz (pvy, =] = const)
(§+%n)%=1‘vn+p+§;—cm p=tp (=17
%%%=T—1Tit—i%z+—ﬂ—2§f—vc—~%vn—pvn +—,§i—HT+C2UT+C3u,;_c4

Here H_, v, and Hy, vy are the components of the magnetic field tangential and normal to the wave frornt
and the flow velocity of the gas; p, p and t are the pressure, density, and internal energy of 1 g of gas;  and
¢ are the first and second viscosity; o and » are the electrical and thermal conductivities of the gas; Cy, C,,
Cj, and C, are constants determined from the boundary conditions.

It is easy, by means of simple calculations, to verify that the critical velocity, transition through
which is possible within the profile of the evolutionary magnetohydrodynamic shock wave, exists only in the
case when dissipation due to the viscosity of the medium can be neglected. When n=¢ =0, system (2.1) re-
duces to a system of two differential equations [2, 4]

dh du _ fQu kb
B =0, h), x4 = Eﬁ @2.2)
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Here,

v, (z) — v~ _ H. (5)—H. e w7 — 1)
U= Un_ R /’l—————li‘T———-, B:-Rsy—n_-’ X:——I_F__
Pu, )y =u~+1— A, h 4 uh 2.3)
1 /s R t,’

Pl b= (M7 — u— AR — Yy (r + 1) w2 — 1,4,
X A7 41 (= 4,01 — v b (14 )+ At

X (4B §(, Hy=To(u, ) — % g, b)

M is the Mach number, A, is the normal, and A the tangential Alfven number in the undisturbed medi-
um ahead of the wave. For slow shock waves Aj < 1.

The limiting singular points O(u™=0, h™=0) and A (u*, h¥) are determined from the equations ¢(u, h) =
0 and 7 (u, b) = 0. When the inequalities

: 0 2 4)>0
v(0)< >, (4> @.4

are satisfied, this corresponds to transition through the critical velocity (in this case, the isothermal veloc-
ity of sound).

In this case, the limiting singular points O and A will be saddle points. The integral curve [5] leaves
the point O in the direction z, (O) and enters at the point A in the direction z; (A) (limiting case x/B << 1)

x YO, (0) 12\ -
20 =4-F715  +0 (%)>0 @.5)
A FA G (A — fy (A) 9, (4) o
n(d)=— 7y TP T @ @ + 0<Bz)>°

In satisfying the conditions of Eq. (2.4), system (2.2) still has one singular point C(u®, h®), the coor-
dinates of which are determined from the equations

Y (u, b) =0, Flu, By =0

The point C represents a node with characteristic directions

O g 1.7, ©) — 1,/ (€) %, (€) "
a@)=—7rg+t5 20 O ©) +0(‘BT)>°
4 2O9/© "
a(C)=g—7g+0 (%)>0 2.6)

so that in the direction z,(C) there will be a unique integral curve at the node, which in the future we shall
call the separatrix of the node.

3. We shall consider in advance the simpler case of a nonthermally conducting medium. The system
of equations describing the profile of a shock wave in this case has the form

B%}} = (uh), fo(w By =0 ‘ (3.1)

According to Section 1 this system does not contain a singular point within the interval (OA), and on
transition through the critical velocity (f(;u (u, h) = 0), which in this case is the velocity of sound, all the pa-
rameters of the medium with the exception of the magnetic field undergo a discontinuity. Actually, the func-
tions u(x) are the solution of the system of equations

du fon' (1, )

Bgr =—0@h oy fo@n=0
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h which can be seen easily when M > 1 contains the nonphys-
ical part du/dx > 0 (rarefaction wave). Hence, it follows
immediately that as

du| du
—E;:__>0 f\or M>1<dz

r <)
ht

the velocity profile of a supersonic slow shock wave begins
with a discontinuity, the magnitude of which is determined
from the condition

fo(uy 0) =0 3.2)

Confirmation of the validity of the conclusion drawn
can be obtained from expression (2.5), the first part of
which tends to zero when y— 0, which affects the existence
of the part of the wave in which a velocity discontinuity
occurs without change of magnetic field.

It is not difficult to verify that Eq. (3.2) gives a value
for the velocity discontinuity which coincides in accuracy
with the discontinuity in a gas-dynamic shock wave [7}. The
same may be said also about the pressure, density, and
temperature discontinuities. Thus, a slow supersonic shock
magnetohydrodynamic wave in a nonviscous nonthermally
conducting medium is initiated by a normal gas-dynamic
shock wave {1, 8].

4. Let us return to system (2.2). By eliminating x,
we reduced the system of two equations to a single equa-
tion relative to dh/du

by @) (4.1)

7R ] )

The isoclines

Fig. 1

@ k) =0, P(u, h)=0 (i"-=o); Fu, h)=0 (’%=w)

$/4
and also the known nature of both points (see Section 2) permit the path of the integral curves h(u) [or u(h)]
to be satisfiea qualitatively by this equation (see Fig. 1).

The arrowsgoing out from the curves f =0, ¢ =0, and ¢ = 0 in the figure indicate the region of positive
values of the functions listed. The arrows on the integral curves show the direction of motion of the point
(u; h) along the integral curve with increase of x [see Eq. (2.2)].

It is easy to see that the integral curve joining the points O and A necessarily passes though point C
and that its branch CA has only one common point with the curve ¢(u, h) = 0. In order to show the validity of
the latter statement, we construct the curve fy(u, h) =0 in the plane uh. Because the inequality foh'ty'~
fou'th' > 0 is satisfied at least over the interval OA, the slope of the integral curves at each point on fy(u, h) =
0 is less than the slope of the tangent to the curve £y(u, h) =0 at the same point.

On the other hand, on the isocline f(u, h) =0, the slope of the integrai curves is always greater than
the slope of the tangent to this isocline. Hence it follows that in the inverval CA the integral curve is dis~
placed completely to a small region bounded by the curves f(u, h) =0 and yy(u, h) =0.

In this case, the solution of Eq. (4.1) has the form [5]

170



h h du; (s)
w (k) = u; (h) — Sexp {\F(oc) da} tds 0t <h<h) 4.2)
h+ 8§
where ug(h) is a continuous function defined by the relation £ (u, h) I =0, and
. £ fu, (uf th), k)
P = 5o e G, 0, ) (4.3)

We note that the function F(h) reverts to infinity at the points h=h* and h = h¢, and within the interval
(he, ht) it is negative, but the derivative du, /dh inthis interval is finite and positive. Therefore, the integral
in the R.H.S. of Eq. (4.2) does not change Sign and vanishes when h— h* and h—he¢. Hence it follows that
the integral curve on the section CA cannot have any other common point with the curve ¥(u, h) =0 except
the point C, and leaves from point C in the direction z;(C).

Thus, the question of discontinuity of the solution is determined by the behavior of the branch of the
integral curve joining the points O and C. Here, the following cases are possible: the integral curve in-
tersects the isocline #(u, h) =0 only at the point C and enters it in the direction z;(C) (Fig. 1a); the integral
curve intersects the isocline ¢ {u, h) = 0 only at point C but enters it inthe direction z,(C) (Fig. 1b) and, finally,
before reaching point C the integral curve intersects the isocline ¥(u, h) =0 at one further point (Fig. 1c).

In the first case h(u) is a smooth continuous function, and all parameters of the medium ug(x)and their
derivatives duy(x) /dx are continuous functions of x.

In the second case the function h(u) has a node at the point C and in this case all the uy(x) also are
continuous but all the derivatives dujp/dx undergo a discontinuity, with the exception of the derivatives of
the magnetic field and temperature (weak discontinuity).

In the third case, as can be seen from Fig, 1b, when passing through #(u, h) = 0 the direction of motion
of the point (u, h) along the integral curve, corresponding to an increase of x, changes to the opposite direc-
tion. The line ¥(u, h) = 0 is singular in the sense that from points of this line located above point C the
integral curves diverge and at points located below C they converge from the adjoining regions. Consequent-
ly, continuous passage of point O to point C with a monotonic increase of x is impossible. In other words,
inside the shock layer all the derivatives dug/dx and also the function uy(x) undergo discontinuity with the
exception of the magnetic field and the temperature, which remain continuous (isothermic isomagnetic dis-
continuity).

As shown in Section 3, in the absence of thermal conduction a slow shock magnetohydrodynamic wave
is started by a conventional gas-dynamic shock wave. It is obvious that with a conductivity that is nonzero
but negligibly small, the condition for the creation of an isothermic discontinuity within the profile of a slow
shock wave coincides with the condition for the creation of an isothermic discontinuity in conventional gas-
dynamics [7]

3r—1

M> = (4.4)

In the case of a finite thermal conductivity, the explanation of the criterion for the creation of a dis-
continuity in analytical form encounters considerable difficulties; this criterion was estimated by a numer-
ical method.

The most satisfactory method of solving this problem was found to be the determination of the behavior
of the separatrix of the node C near the point O. First of all, the solution of Eq. (4.1) for the separatrix has
stability in the region —1<u<0,—1<h<0, as this is a unique curve leaving the point C in the directionz,(C)
and, secondly, continuous solutions can be distinguished easily from discontinuous solutions. Integration of
Eq. (4.1) was undertaken on a computer by the standard method, from point C in the direction of increasing
u up to intersection of the separatrix with one of the coordinates of the axis, so that a relative accuracy at
the last computed point of not worse than 10~ was guaranteed.

As a result of the calculation, it was found that when

3y —

W< TE=

—0.01
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independently of the concrete values of the othér starting parameters varying over wide limits (0.2 < Ap =
0.95; 0.3= A, =5, x/B =0.01,0.1) the separatrix intersects the axis h below the point O.

In this case the integral curve leaving the point O, as is clear from Fig. la, cannot intersect the
singular curve ¥ (u, h) = 0 at any other point except the point C which corresponds to a continuous shock wave

profile,
When

(also independently of the values of the other parameters, see above) the separatrix intersects the axis u to
the left of the point O. It can be seen from Fig. 1b that in this case the required integral curve,before reach-
ing the node C,intersects the curve ¥(u, h) = 0 at one further point, i.e., the shock wave profile contains an
isothermic discontinuity. Thus, within the permissible limits of the calculation carried out, the condition

for the creation of an isothermic isomagnetic discontinuity inside the profile of a slow shock magnetohydro-
dynamic wave coincides with the condition for the creation of an isothermic discontinuity in conventional
gas-dynamics.

In conclusion, we note that a limiting case exists in which the profile of a slow shock magnetohydro-
dynamic wave and, consequently,also the condition for the creation of a discontinuity can be found inanalytic
form. Actually, in the absence of a tangential component of the magnetic field (H; = 0) ahead of the wave,
system (2.2) acquires the form

dH

B dz‘r =(1—An_2+u)H? (4:.5)
du f A \Hom- Tt
o e B i Ut
H

2 . .
— S | A T = A =2 h A u) (- 47 )]

It is easy to see that for satisfying the boundary conditions

===0 (=t

a solution is possible only when H,(x) = 0 and system (4.5) reduces to one equation

e = (st for - )

This equation describes the profile of a normal shock wave in a nonviscous gas.

Hence, it follows directly that when HZ =0 a slow magnetohydrodynamic wave can exist only as a
normal gas-dynamic shock wave with the condition for the creation of an isothermal discontinuity Eq. (4.4).

The authors thank G. Ya. Lyubarskii for useful advice and discussions of the questions touched upon
in this paper.
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